
Doctor Dobbs Journal - CSPICE article.
1

CSPICE - A C Version of J P L ' s SPICELIB Toolkit

Ed Wright

Technology, Pasadena, California
Jet Propulsion Laboratory, California Institute of

What is SPICE?

The Navigation Ancillary Information Facility (N A I F) , under the
direct ion of NASA's Office of Space Science, bu i l t t he SPICE data system
t o assist scientists with planning and interpretat ion of s c i e n t i f i c
observations from space borne-instruments. The system provides the
ancillary information needed t o recover the full value of science
instrument data, and faci l i ta te the correlat ion of individual instrument
data sets with data from other instruments on the same or other
spacecraft .

System, responsible for the dis t r ibut ion of the SPICE data sets, cal led
kernel files, produced by NASA's p lanetary f l ight projects . The SPICE
data kernels exist for:

NAIF serves as the Ancillary Data Node of NASA's Planetary Data

S - Spacecraft trajectory, given as a function of time
(SPK Kernels).

P- Planet, satell i te, comet, asteroid, associated physical
and cartographic constants (PCK Kernels).

I- Instrument information, including internal timing and
other geometric information (I Kernels).

C- C matrix, time tagged orientation data of mounted
s t ructures and instruments (C Kernels).

E- Events for the spacecraft and ground data system, both
planned and unplanned (E Kernels).

Hence the SPICE acronym. NAIF a l so assembles and d is t r ibu tes PCK
kernels based on products provided by J P L ' s Solar System Dynamics Group.

The SPICE l ib rary (SPICELIB) consists of 952 portable FORTRAN
routines with 7 9 , 3 6 9 l i nes of executable code and 1 5 3 , 6 4 9 comment l ines .
The l ibrary contains reader subroutines to retrieve data (posit ion,
velocity, and instrument observation geometry parameters) from each of
the SPICE kernels, plus a wide asgwtment of geometry, math, time

Why Develop

Many N

a C version of SPICE?

~ A I F customers ask f o r a C version of the SPICELIB l ib rary .
Not every si te can access a FORTRAN compiler or programmer, but most
possess a C compiler. C improves ease of use, and C l ibrar ies escape
cross language 1/0 problems and non-portable interface issues. C
integrates easily with Java, C++, and software environments such as IDL
(In te rac t ive Data Language).

What is CSPICE?

CSPICE extends the SPICE system t o t h e C language realm. The
funct ional i ty of CSPICE approximates tha t of SPICELIB, with minor
differences due to the disparate propert ies of ANSI C versus FORTRAN.
The CSPICE toolki t consis ts of an ANSI C version of the SPICELIB
l ib rary , a support l ibrary, SPICE u t i l i t y programs, documentation, and
example cookbook programs. The too lk i t ' s main component, the CSPICE
library, includes the source for a l l C routines generated by f2c from
SPICELIB routines, both f2c support l ibraries (l ibF77, l ibI77), a set of
hand coded wrapper routines which encapsulate certain translated
routines, and a l l required header f i les. Functional l ibrary ports exist
f o r : HP, Solar is , MacPPC, S G I (032 and n32), Win95/NT, Linux, and DEC
Alpha Digital Unix.

Other C l i b ra r i e s ex i s t which provide geometric/vector/matrix math
functions (though not a l l are as numerically stable), but only CSPICE
provides the abi l i ty t o read and write SPICE kernel f i les . CSPICE a l so
includes extensive t i m e conversion routines and a sophisticated,
user-configurable error trace/signal system which emulates exception
hand1 ing .

SPICELIB t o CSPICE

CSPICE'S existence requires the automatic conversion of FORTRAN
code t o C v ia the f2c u t i l i ty . The u t i l i t y c r e a t e s C code which
emulates the behavior of input FORTRAN code. The conversion of 79 ,000
plus l ines of FORTRAN code t o C is impractical without f2c, so lacking
f2c, development of CSPICE would require a routine-by-routine rewrite of
SPICELIB and take a horrendous amount of time.

forms of a routine. Given a FORTRAN routine sub in f i l e sub.f(or) , f2c
creates a C routine sub- i n f i l e sub.c.. The wrapper's name is sub-c i n
f i l e sub-c.c and sub-c may c a l l sub-. The code base of the CSPICE
l ib rary i s the set of a l l f2c translated routines.

library builds with the options:

N A I F uses a naming convention to dis t inguish between the various

The f2c application has several command line options. The CSPICE

-u -C -a -A -P -!bs

-U

-C

-a

-A
-P

-!bs

Make the default type of a variable "undefined."
Compile code to check subscripts are within
declared array bounds.
Make local variables automatic instead of s t a t i c
unless they appear in DATA, EQUIVALENCE, NAMESLIST
or SAVE statements.
Produce ANSI C.
Write a prototype f i le of ANSI or C++ fo r
definit ions in each input FORTRAN f i le.
Do not recognize backslash escapes in character
str ings.

The Macintosh version of CSPICE does not use the -a argument due t o a
32k s i z e l i m i t for local var iables imposed by the MetroWerks Codewarrior
compiler.

The f2c dis t r ibut ion consis ts of the source for the
application, as w e l l as the source for the lib177 and libF77 libraries
which simulate FORTRAN funct ional i ty in C . You may download the
dis t r ibut ion from:

http://netlib.bell-lab.com/netlib/f2c/

Wrappers

The wrappers provide a C-friendlier interface to the more commonly
used routines or to routines hand recoded i n C and not dependent on an
f2c translation (such as math functions). Compare the program interface
between a FORTRAN routine, i ts f2c counterpart, and the corresponding
wrapper. The FORTRAN version of SPKEZ has as an argument list:

SUBROUTINE SPKEZ (TARG, ET, REF, ABCORR, OBS, STARG, LT)

INTEGER TARG
DOUBLE PRECISION ET
CHARACTER* (*) REF
CHARACTER* (*) ABCORR
INTEGER OBS
DOUBLE PRECISION STARG (6)
DOUBLE PRECISION LT

where TARG, ET, REF, ABCORR and OBS are inputs, with STARG and LT the
outputs. f2c creates an interface with the form:

i n t spkez- (integer * targ I

doublereal *et I

char *ref #

char *abcorr ,

http://netlib.bell-lab.com/netlib/f2c

integer *obs I

doublereal *starg ,
doublereal *It I

f tn len ref-len ,
f tn len abcorr-len)

Now the wrapper routine, which calls spkez-:

void spkez-c (SpiceInt taw,
SpiceDouble et ,
ConstSpiceChar * r e f ,
ConstSpiceChar * abcorr,
SpiceInt obs ,
SpiceDouble starg[61,
SpiceDouble * It 1

spkez-c passes C s t r ings, s ingle values (for input) , and pointers
(s t r ings and outputs) ; spkez- passes only FORTRAN s t r ings, pointers
(input and output) , and the string length values. For those not
experienced with C and FORTRAN, the differences between s t r i n g formats
may be unclear. Internally, f 2 c uses FORTRAN style stings: blank
padded without null terminators.

several routines with such calls; the most common re turn FORTRAN
equivalents of argv, argc, and system t i m e . f2c understandably fails t o
t ranslate these rout ines t o usable C, so those are manually recoded.

functionali ty available in the standard C l ibrary. The appropriate C
c a l l s replace the CSPICE versions of the routines either via a macro or
wrapper.

programs, not an f 2 c version of some program. A programmer should
access CSPICE through a wrapper, assuming a wrapper for the needed
routine exists. Otherwise d i r ec t calls to the f2c'd code base are
needed. A wrapper may call other wrappers, but the f2c'd code base
cal ls only other f2c 'd code (subl- calls sub2-, not sub2-c).

Wrappers also replace system dependent calls. SPICELIB contains

A number of non-portable SPICELIB routines provide some

The CSPICE design assumes calls to the l ibrary from pure C

Problems and Solutions

The process of creating a C version of a large FORTRAN l ib rary
lends itself t o numerous problems from code format and style issues to
the use of in te rna l data types. The requirement of f u l l ANSI
compatibility for the wrappers ensures few or no po r t ab i l i t y problems.
Wrapper development uses the GNU C compiler (gcc) with the arguments
-ansi (support ANSI standard), -Wall (warn of a l l e r r o r s) , and -pedantic
(re jec t non-ansi extensions).

The NAIF Team defined a codigq Standard for C routines which
includes complete, informative, QLIO b n understandable internal

documentation. NAIF SPICELIB routines contain extensive headers which
l i s t revisions, authors, platform specific modifications, as w e l l as a
detailed description of the routine's function.

routines are the "seeds" for the wrappers. A simple per1 script cas t s
the FORTRAN comments t o C style then creates a skeleton for the new
subroutine containing the comments.

deliberately uses typedefs which d i f f e r from the f2c typedefs. The
basic f2c typedefs:

With regards to generation of the wrappers, the or iginal FORTRAN

CSPICE and f 2 c use typedefs to emulate FORTRAN data types. CSPICE

typedef long i n t integer;
typedef sho r t i n t shor t in t ;
typedef f loa t real ;
typedef double doublereal;
typedef long i n t logical;
typedef long i n t f tnlen;

f 2 c treats a l l Characters and s t r ings as char *. The most commonly used
CSPICE typedefs:

typedef char
typedef double
typedef f loa t
typedef long
typedef const char
typedef const double
typedef const f loat
typedef const long

Spicechar;
SpiceDouble;
SpiceFloat;
SpiceInt ;
ConstSpiceChar;
ConstSpiceDouble;
ConstSpiceFloat;
ConstSpiceInt;

enum ,Spiceboolean { SPICEFALSE = 0, SPICETRUE = 1 1 ;

typedef enum ,Spiceboolean SpiceBoolean;
typedef const enum ,Spiceboolean ConstSpiceBoolean;

The const types are not required by a need of function, but their
use insures input values are not unintentionally modified within a
routine. A l l functions with input-only vectors and matrices have those
arguments declared constant.

A problem exis ts with the funct ion declarat ions in s td1ib.h on the
sun platform. The f 2 c header f i le , f2c.h, def ines several macros which
conflict with those found in s td1ib.h. A s some CSPICE functions require
both f2c.h and std1ib.h our solution is t o copy the needed typedefs to
CSPICE instead of including f2c.h in a CSPICE header f i l e .

The translated routines ' argument list and f2c internal s t r ing
formats caused most of the problems during the first stage of CSPICE
development. A s mentioned, f 2 c converted code use FORTRAN s t r ings ,
consequently a string passed from a standard C routine to a translated
routine must be converted to a F O R T W)Itring; a s t r ing passed from a

t ranslated rout ine t o a standard C routine must be converted to a C
str ing. Translated routines do not detect possible error modes such as
zero length str ings or null character pointers, so several subroutines
and a set of macros handle these string operations. A s i n o the r
FORTRAN-C interfaces, the routines require s t r ing length arguments.

Performance

The C code created by f2c may well emulate the behavior of the
source FORTRAN code, but that code tends to run slow without compiler
optimization.

small d i f f icu l ty expressed i t se l f dur ing the f i r s t attempts t o compile
CSPICE under Codewarrior Pro 3 . If the compiler optimization settings
are :

CSPICE uses optimization on a l l target platforms when possible. A

Instruction Scheduling for 604,
Optimize fo r SPEED,
Global Optimization Level 4 ,
Peephole Optimization

several routines f a i l t o compile due t o memory constraints on the
Codewarrior IDE. Trial and er ror proved the culprit to be Global
Optimization Level 4 , so the offensive routines now compile a t Global
Optimization Level 1. Another routine resists optimization on the MS-PC
platform; this routine compiles unoptimized.

C++ issues

CSPICE is the basis for a prototype object oriented version of the
SPICE library i n C++ (SPICE++, still under design). Several problems
were found with calls t o CSPICE from C++ code.

ConstSpiceDouble (const double). Some pesky compilers f l a g a "non-const
passed to a const" warning when passing non-const arguments. N a t
Bachman created a set of interface macros which perform type casting for
the appropriate routines. The macros prevent the warning without
forcing the user to expl ic i t ly declare their vectors or arrays as const.

Another issue is name mangling. A C++ compiler does not create the
same symbol name f o r a routine as does a C compiler - a consequence of
C++ function overload property. To l ink a C l i b ra ry t o a C++ program
requires that the C routine be defined as an external routine. N a t
Bachman added a compile time flag to ident i fy the CSPICE prototypes as
external functions when linking the CSPICE l ibrary against a c++
routine.

A l l input arrays and matrices to wrappers are of type

Applications of the CSPICE Library.

Example 1 shows a simple program (the states cookbook program) with
a complete header, which retrieves SPICE kernel data to ca l cu la t e a
body's state with respect to some observer in a user defined reference
frame. The program demonstrates how to load SPK, PCK, and leapseconds
kernel f i les, convert a time/date s t r ing t o t he epoch time (a time
measured against a known reference date), then retrieve a state i n a
par t icular reference frame a t the epoch time. ,

Other CSPICE uses:

IDL - CSPICE and a col lect ion of interface routines allows
I D L t o access SPICE kernel data.

SSC - Solar System Calculator, a simple scr ip t ing in te r face
t o CSPICE. Originally designed by Mike Spencer,
updated to use CSPICE by Ed Wright.

SOAP - a sophisticated orbit analysis tool by The Aerospace
Corporation f o r the MacPPC, Windows NT and Solar is .
SOAP d e t a i l s are available a t :

http://www.aero.org/software/soap/index.html.

The use of CSPICE gives SOAP users the ability t o
v isua l ize t ra jec tory data and viewing geometry
from data i n SPICE kernels.

Future Work

CSPICE work continues for the foreseeable future. Current goals:
- expand the number of wrappers
- improve platform compatibility
- C spec i f ic documentation - bug squashing

Long range goals:
- An object-oriented l ibrary (SPICE++)
- decoupling the f2c 1/0 libraries from CSPICE
- use of dynamic memory a l loca t ion in low level CSPICE

- complete documentation with t u t o r i a l code examples
routines

CSPICE is not designed for multithreaded applications nor does NAIF
does not plan to add th i s capabi l i ty . SPICELIB and CSPICE are s tab le
across a l l dates and calendars.

Alpha versions of the CSPICE t;laolkit are ava i lab le v ia anonymous
f t p a t naif . jpl .nasa.gov in /pub/naif/csgice.

http://www.aero.org/software/soap/index.html
http://naif.jpl.nasa.gov

NASA supports CSPICE development under contract #? . My thanks to
N a t Bachman who provided input and reviews of t h i s a r t i c l e .

Example 1.

/*

-Procedure states(Compute state of one body relative to another)

-Abstract

This "cookbook" program demonstrates the use of NAIF S - and P-
Kernel (SPK) f i l e s and subroutines to calculate the state
(posit ion and veloci ty) of one so la r system body relative t o
another solar system body.

The purpose of t h i s program is twofold:

2) To show how the apparent, true, or geometric state
(inertially referenced Cartesian posit ion and veloci ty)
of one so la r system body relat ive to another solar
system body may be calculated.

The CSPICE subroutine spklef-c (S/P Kernel, Load Ephemeris
File) handles the first task by maintaining a database of
ephemeris f i l e s . The ca l l ing program indicates which files
to load by passing their names t o spklef-c.

spkezr-c (S / P Kernel, Real easy reader) handles the second task
by accessing the data loaded with spklef-c (spkezr-c does not
require the name of an SPK f i l e as input) .

-Copyright

Copyright (1 9 9 8) , California Inst i tute of Technology.
U . S . Government sponsorship acknowledged.

-Input

The program prompts the user for the following input:

- The name of a NAIF leapseconds kernel f i l e .
- The name of a NAIF binary SPK ephemeris f i l e .
- The name for the observing body.

- The name for the target body.
- A time s t r i n g of in te res t .
- A n reference frame, i . e . , "52000" .
- The type of aberration correction desired.

-Output

- The s t a t e of the target body r e l a t ive t o the observing

- The one-way light-time fram the target body t o t he
body.

observing body.

-Par t iculars

The user supplies a NAIF leapseconds kernel f i le , a NAIF binary
SPK ephemeris f i le , va l id names for both the target and
observing bodies, and the t i m e to calculate the body's state.

Note that the 'target body' and the 'observing body' are both
NAIF ephemeris objects described via t h e i r common names, and
may be any of the following, provided ephemeris data are
avai lable for them i n the SPK fi le:

a spacecraft
a planet or satell i te mass center
a planet barycenter
the sun
the solar system barycenter
a comet
an as te ro id

By def ini t ion, the ephemerides i n SPK fi les are continuous. The
user can obtain states for any epoch within the interval of
coverage. Epochs are always specif ied i n ephemeris seconds past
Ju l ian year 2000 when accessing SPK files.

The ephemeris data i n a s ingle SPK f i l e may be referenced to a
number of d i f f e ren t (i ne r t i a l o r non- ine r t i a l) frames. The user
can specify that states be returned in any of the recognized
frames l i s t e d i n t h e NAIF IDS Required Reading, including 52000
and B1950.

spkezr-c returns apparent, true, or geometric states depending
on the value of the aberration flag when i t is cal led.

Flag Type of correction State computed by spkezr-c --"-----"-""-"""""""""""""""""""""""
'ILT+S" l ight-t ime and s t e l l a r abe r ra t ion Apparent

True II LT It light-time only

"NONE" no correction Geometric

For the sake of brev i ty , th i s program performs no e r ro r checks
on i ts inputs. Mistakes w i l l cause the program to crash.

-References

-Restrictions

None.

-Literature-References

None.

-Author-andJnstitution

E.D. Wright (JPL)

-Version

-CSPICE Version 1 . 0 . 0 , 01"AR-1998 (EDW)

-&
*/

/* Load needed headers. */

#include <stdio.h>
#include "SpiceUsr.h"

/* Local declarations. */

#define
#define
#define

SpiceDouble
SpiceDouble
SpiceDouble
SpiceDouble
SpiceDouble
SpiceDouble

UTCLEN 48
LENOUT 32
FILELEN 72

vec 131;
vecl [3 1 ;
vec2 [3 1 ;
vout [3 1 ;
state 161;
It;

SgiceDouble et;

Spicechar
Spicechar
Spicechar
Spicechar
Spicechar
Spicechar
Spicechar
Spicechar
Spicechar

SpiceInt
SpiceInt

leap;
spk ;
corr;
ref;
utc;
format;
targ;

u t c s t r [UTCLEN
O b 8 ; .: _ .

prec ; . , ..~.
handle, *

I ;

void main ()

/*
Set the t i m e output format and the precision of that output.
*/
format = " C " ;
prec = 0;

/*
Start out by prompting f o r the names of kernel f i les .
Load each kernel as the name is supplied.

Note: prompt-c w i l l allocate the needed memory for the
returned strings.
*/

/* Get and load the leapsecond kernel. */
leap = prompt-c ("Enter name of leapseconds kernel : ") ;
Idpool-c (leap) ;

/* Get and load the sgk kernel. */
SPk = prompt-c ("Enter name of SPK f i le
spklef-c (spk, &handle) ;

/* Get the res t of the needed parappeers. */
targ = prompt-c ("Target (what 1 looking a t)

: 1 1) ;

: l ') ;

ref = prompt-c ("Reference frame (52000, B1950, etc .) : ' I) ;

corr = prompt-c ("Aberration correction : ") ;
obs = prompt-c ("Observer (where am I) : ") ;
u tc = prompt-c ("Event time : ") ;

/* Convert the t ime s t r ing to ephemeris time 52000. */
str2et-c (u tc , &et 1 ;

/* Compute the state of targ from obs a t et. */
spkezr-c (targ, e t , re f , cor r , obs, state, &It) ;

._ .:,L.&L.

/* Convert the ephemeris time t o a calendar format. */
et2utc-c (e t , format, prec, UTCLEN, u t c s t r 1 ;

/*
Everything's computed. Output the resul ts . Uni ts are
kilometers and kilometers per second.
*/
p r i n t f (" \ n The state of %s w r t %s a t UTC time %s\nn, targ,

obs ,
u t c s t r 1 ;

p r in t f (rn x : %f KM \ n n , state[O]) ;
p r in t f (" KX: %f mS\nn, s t a t e [3]) ;
p r in t f (Y : %f KM \ n n , state[^]) ;
p r in t f (" W: %f mS\nrn, stater41 1 ;
p r in t f (" Z : %f KM \ n n , state[2]) ;
p r in t f (" VZ: %f mS\nm, state151 1 ;

A

